Catalysis and Pyrolysis
Reorganization of a compound into smaller and simpler compounds, or compounds of lofty molecular weight, under elevated temperatures usually in the range of 400°C to 800°C to as high as 1400°C. It differs from combustion in that it occurs in the absence of air and therefore no oxidation takes place. The pyrolytic disintegration of wood forms a large number of chemical substances. Some of these chemicals can be used as substitutes for conventional fuels. The dispersal of the products varies with the chemical composition of the biomass and the operating conditions.
- Fast Pyrolysis
- Hydrotreating to Stable Oil
- Hydrocracking
- Hydrogen Production
- Fast Pyrolysis
- Hydrotreating to Stable Oil
- Hydrocracking
- Hydrogen Production
- High temperature shift (HTS) catalyst
Related Conference of Catalysis and Pyrolysis
Catalysis and Pyrolysis Conference Speakers
Recommended Sessions
- Bio-catalysis and Biotransformation
- Catalysis and Applications
- Catalysis and Pyrolysis
- Catalysis and Zeolites
- Catalysis for Chemical Synthesis
- Catalysis in oil and gas
- Chemical Engineering
- Chemical Kinetics and Reaction Engineering
- Computational Catalysis
- Environmental Catalysis and Green Chemistry
- Heterogeneous Catalysis
- Homogeneous catalysis, Molecular Catalysis
- Industrial Catalysis
- Metathesis of olefins
- Nanochemistry
- Organometallics chemistry
- Petrochemistry
- Photoelectrochemistry, Photocatalysis and Photoreactors
- Polymer Engineering
- Spectroscopy in Catalysis
Related Journals
Are you interested in
- Biofluid Flow Dynamics in Microfluidics - Microfluidics 2025 (France)
- Cell Sorting and Separation in Microfluidic Devices - Microfluidics 2025 (France)
- Fluid Mechanics in Microfluidic Devices - Microfluidics 2025 (France)
- High-Throughput Screening Using Microfluidics - Microfluidics 2025 (France)
- Lab-on-a-Chip Technologies for Diagnostics - Microfluidics 2025 (France)
- Microfluidic Biosensors for Disease Detection - Microfluidics 2025 (France)
- Microfluidic Devices for Environmental Monitoring - Microfluidics 2025 (France)
- Microfluidic Organ-on-a-Chip Models - Microfluidics 2025 (France)
- Microfluidic Platforms for DNA/RNA Analysis - Microfluidics 2025 (France)
- Microfluidic Systems for Protein Engineering - Microfluidics 2025 (France)
- Microfluidic Systems for Single-Cell Analysis - Microfluidics 2025 (France)
- Microfluidics for Drug Delivery and Nanomedicine - Microfluidics 2025 (France)
- Microfluidics for Personalized Medicine Applications - Microfluidics 2025 (France)
- Microfluidics in Cancer Research - Microfluidics 2025 (France)